
Femtosecond Dynamics of Solvation: Microscopic Friction and Coherent Motion in Dense
Fluids

J. S. Baskin, M. Chachisvilis,† M. Gupta, and A. H. Zewail*
Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology,
Pasadena, California 91125

ReceiVed: NoVember 25, 1997; In Final Form: January 19, 1998

In this paper, we present detailed experimental and theoretical studies of the femtosecond dynamics of
microscopic friction. The real-time rotational motion of a well-defined system of diatomic solute in monatomic
solvent has been studied for two solvents ranging from gas to liquid densities. Both coherent inertial and
diffusive limits of the motion and all stages in the transition between these two regimes are observed in
detail. The transient anisotropies over the entire range of experimental densities and solvents are well-
represented by the J-coherence bimolecular collision model presented here. This stochastic hard-sphere collision
model explicitly relates the physical properties of the solvent to the anisotropy and the coefficient of rotational
friction, permitting calculation of the transient anisotropy from the Enskog hard-sphere collision frequency.
Friction coefficients obtained from J-coherence analysis of experimental anisotropies were compared with
those from Gordon J-diffusion, and Langevin-Einstein analyses, and with the hydrodynamic range of friction.
The density cutoff for applicability of diffusive or continuum treatments is such that the angular trajectory
for averageJ in the angular velocity autocorrelation lifetime is∼50°, while the microscopic, molecular picture
of the friction can be applied from the gas to the liquid.

I. Introduction

Microscopic friction, the interaction of solvent and solute at
the molecular level, plays a fundamental role in the dynamic
evolution of solution-phase chemical and physical processes (see
e.g. refs 1-3). Friction manifests itself by its influence on
rotational and translational motion in the condensed phase,
which influence may be described by solvent viscosity and its
relationship to the Einstein diffusion limit of the Brownian
motion. At the molecular level, the situation for rotational
dynamics is represented schematically in Figure 1, where the
rotation of a diatomic solute molecule in a bath of solvent
particles is determined by the rate of collisions and by the
effectiveness of those collisions in transferring angular momen-
tum to or from the solute. At even moderate densities (a few
atoms/nm3), collisions in molecular fluids occur at subpicosec-
ond intervals. With femtosecond time resolution, the rotational
evolution of the solute can be precisely observed, and its
dependence on solvent properties and densities can be character-
ized. Such measurements probe directly the nature of micro-
scopic friction.
Theoretical models of the role of friction in controlling

molecular rotation have a long history (see e.g. refs 4-9). These
range from the Gordon stochastic binary-collision models (J-
diffusion and m-diffusion),8 which emphasize the molecular
nature of the solvent, to hydrodynamic calculations that treat
the solvent as a continuous viscous medium.4,5,10 The assump-
tions underlying many treatments, however, preclude the
quantitative prediction of dynamic behavior as a function of
the physical nature of the solvent particles for arbitrary solvent
and arbitrary solvent densities. The gradual transition of the
polarization anisotropy from its distinctive and nonmonotonic

free-rotor form to a diffusion-controlled exponential decay at
long time and nonzero pressure is approximated in the Gordon
models, although not quantitatively and without explicit solvent
dependence, while other treatments are invalid under conditions
of large angle free (inertial) rotation and therefore cannot
reproduce the coherence associated therewith. The following
question must then be asked: Can the quantitative features of
the measured dynamics be captured for a broad range of
densities by a simple model, short of a full molecular dynamics
simulation?
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Figure 1. Schematic of the microscopic origin of friction on the
rotational motion of a diatomic solute in atomic solvent. A random
collision interrupts the free rotation of the diatom and causes a change
∆JB in angular momentum (from initialJB to final JB′). In the inset, the
limiting cases of diffusive and purely coherent rotation are illustrated
conceptually by a plot of cos(Θ(t)), whereΘ(t) is the evolution with
time of the polar angle formed by the diatom internuclear axis with its
direction att ) 0.
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We recently reported11 direct femtosecond measurements of
the rotational anisotropy of iodine from isolated molecule
conditions to near-liquid densities in supercritical argon and
applied a binary-collision model that incorporated accurate hard-
sphere atom-diatom collision dynamics, including the persistence
of coherent rotational motion through many collisions (J-
coherence model), to extract the density dependence of solvent
friction across the full range of densities. Here we expand on
that work, describing in detail the J-coherence model and
examining its value in linking in a simple and direct manner
the physical characteristics of the solvent particles, the rates of
solvent-solute collision, and rotational friction. We also give
a full account of the analysis of experiments with both helium
and argon as solvent and compare with the Gordon J-diffusion
model and well-known Langevin equation and hydrodynamic
treatments. This problem of the diffusive motion has been the
subject of many experimental and theoretical studies, and a
perspective was already given in ref 11 of the work done by
the groups of Berne, Chandler, Eisenthal, Hochstrasser, Hynes,
and others (for reviews, see refs 1-3 and 9).
The paper is organized as follows. In section II, a review is

given of the principal theoretical treatments applied to our
measurements, in addition to a full development of the J-
coherence model. A description of the experimental apparatus
and procedures is given in section III, followed by a presentation
of experimental and fitting results in section IV. The noteworthy
features of those results are discussed in section V and
summarized in section VI.

II. Theoretical Section

A. Definition of Terms. In attempting to illuminate the
microscopic dynamics illustrated in Figure 1, we must proceed
experimentally by the method of probing the macroscopic
transient polarization anisotropy,r(t), of a statistical sample of
molecule-fixed transition dipoles. The experimental quantity
is

whereI|(t) and I⊥(t) are the transient pump-probe intensities
measured for probe polarization vector parallel and perpendicu-
lar, respectively, to that of the pump. This quantity can also
be expressed in terms of the ensemble-averaged motion ofµ̂2,
the probe transition dipole unit vector, with respect to the pump
transition dipole,µ̂1:

whereP2 is the second-order Legendre polynomial and〈...〉
denotes the ensemble average.
Another dynamic variable which characterizes the ensemble,

but which is not directly measurable, is the angular velocity
autocorrelation function, given by

whereωb is the angular velocity of a molecular rotor.
In the case with which we are concerned here, the Br X

pump transition and the Er B probe transition of molecular
iodine, both transition dipoles are well-defined and parallel to
the internuclear axis (µ̂1 ) µ̂2 ) µ̂). For a linear rotor, such as
diatomic iodine, the angular momentum isJB ) Iωb, whereI is
the moment of inertia.I, in turn, is equal to1/4Mr2 for diatomic
massM and internuclear distancer. In the absence of collisions,
i.e., when there is no friction (free rotation),JB and ωb are

conserved, andΩ(t) is a constant. In contrast, with (collisional)
friction, at sufficiently long timesJB is randomized andΩ(t) must
decay to zero. Thus,Ω(t) measures the degree of angular
momentum scrambling in the sample.
The ensemble averages in eqs 2 and 3 are over the distribution

of angular velocities that characterizes the sample. For a
thermally equilibrated sample, this distribution is determined
by the moment of inertia. It must be noted, however, thatI
depends on the vibronic state of the molecule, so photoexcitation
can produce samples with rotational distributions that do not
correspond to the ambient temperature. Equilibration through
subsequent collisions then results in an evolution of the sample
rotational temperature.
This situation applies for the Br X transition of iodine. At

room temperature (296 K), the ground-state rotational distribu-
tion (rotational constantB′′ ) p/(4πcI) = 0.037 cm-1) has a
peak, given by [kT/(2Bch)]1/2 - 1/2, nearJ ) 51. The average
internuclear separation is greater in the excited state, reducing
B′ to∼0.0275 cm-1. Thus, immediately upon photoexcitation,
in which J changes by at mostp, the rotational distribution
corresponds to a lower temperature ( 220 K).
Finally, for the subsequent discussion of the interaction of

solute and solvent particles,M andm will be used to refer to
the mass of solute and solvent, respectively.
B. Langevin Friction Model. The purpose of this section

is to quantify the concept of friction as it emerges from a
derivation appropriate to the high-density limit. The relationship
established betweenΩ(t) and the reduced coefficient of
rotational friction,ê, then serves to define fiction in the analysis
of experiments at all densities.
The reorientational motion of a solute molecule in high-

density fluids may be treated as a form of rotational Brownian
motion. In this model, the total torque acting on the mole-
cule is separated into the frictional torque, which is propor-
tional to the angular velocity of the molecule, and a random
torqueTh. Such a separation can be shown to be strictly valid
in the case of translational motion of a slow, heavy particle
in a bath of light particles, i.e., in the limitm/M f 0,12 since
in this case the expectation value of the rate of momentum
transfer (force) is proportional to the velocity of the heavy
particle.
The motion of a linear rotor with two rotational degrees of

freedom is described by the Langevin equation forωb,

whereê is thereduced friction coefficient. (The standard friction
coefficient isú ) êI; note that the dimension ofê is inverse
time.) It is assumed thatTB has the following properties:

whereT0 ) (1/2π) ∫-∞
∞ 〈TB(t)‚TB(0)〉 dt is a spectral density of

the random torque at zero frequency.
Property 5b, an infinitesimally short correlation time of the

random torque, represents the limit of instantaneous dissipation.
In essence, it requires that there exist a time interval∆t such
that even thoughωb(t+∆t) - ωb(t) is small, no correlation exists
betweenTB(t+∆t) andTB(t). It is believed that this condition is
fairly insensitive to the nature of the heat bath as long as the
bath consists of molecules that are much lighter than the one

r(t) ) (I|(t) - I⊥(t))/(I|(t) + 2I⊥(t)) (1)

r(t) ) 0.4〈P2[µ̂1(0)‚µ̂2(t)]〉 (2)

Ω(t) ) 〈ωb(t)‚ωb(0)〉 (3)

I
∂

∂t
ωb(t) ) -êIωb(t) + TB (4)

〈TB〉 ) 0 (5a)

〈TB(t1)‚TB(t2)〉 ) 2πT0δ(t1 - t2) (5b)

〈TB(t)‚ωb(0)〉 ) 0 (5c)
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under investigation. However, deviations are expected at high
densities due to collective response of the bath. For example,
“ring” collisions or backscattering effects will cause non-
Markovian behavior which is a consequence of the fact that
the system has a finite memory time.13-16 These effects can
be accounted for by using memory function formalism that
introduces a time-dependent friction coefficient.17,18 The condi-
tion 5c implies that there is no correlation between initial
velocity and random torque, which is as expected for an
infinitesimally short force correlation time.
Equation 4 can be integrated to yield the mean square angular

velocity.18,19 Then, using eq 5 and assuming that at a sufficiently
long time the mean-square angular velocity should approach
its equipartition value (〈|ωb(∞)|2〉 ) 2kT/I at temperatureT), one
finds that the friction coefficient is related to the spectral density
of random torque,

This relation is known as a fluctuation-dissipation theorem and
results from the separation of the total torque on the Brownian
particle into the frictional and the random parts.
Using eqs 4 and 5, it is straightforward to show that18

That is, the rate of decay of the angular velocity autocorrelation
function is simply equal to the friction coefficient. The
exponential decay is a consequence of Markovian properties
of TB. In the following, we will uset ) 1/ê to designate the
decay time ofΩ(t).
In order to calculate the experimentally observed quantity,

r(t), it is necessary to follow the angular motion of the dipole
or, here, the rotor axis. The basic equation governing the time
evolution is

whereωb(t) is a Markovian stochastic process in our case. The
formal solution is given by

whereP is the time ordering symbol andR̂ represents a set of
infinitesimal rotation operators.17,20-22

Equation 8 can only be used directly to calculate the first-
order Legendre polynomial (µ̂(t)‚µ̂(0)). To obtain the second-
order Legendre polynomial, this equation can be generalized
for higher spherical harmonics, which leads to the following
expression for the transient anisotropy:

The moment expansion of eq 10 suffers from poor convergence.
Accordingly, the cumulant expansion is used to obtain an
approximate solution.23 We use the second-order cumulant
approximation, which leads to the expression

This is justified at very high pressures when the free rotation

time of the molecules is significantly smaller than the mean
thermal reorientation time. It is worth noticing that the double
integral in eq 11 represents the mean-square angular deviation
from the initial position.
Equation 11 relatesr(t) to Ω(t) and can be used to obtain

Ω(t) from anisotropy data as

or, substituting forΩ(t) from eq 7, eq 11 can be integrated to
yield the analytical expression for transient anisotropy,

For t . τ, the anisotropy decays exponentially,

where the amplitudeC depends onτ such thatr(t) ) 0.4 att )
τ. Using the Langevin-Einstein value for the rotational
diffusion constant,Dr ) kT/(êI) ) kTτ/I, one sees that the
anisotropy decays exponentially with rate 6Dr, the well-known
result for the diffusive limit. This relation defines the diffusive
rotational relaxation timeτrot ) 1/(6Dr). Note that, in this limit,
the decay rate of anisotropy isinVerselyrelated to the decay
rateê of Ω(t), or τ ∝ 1/τrot.
In the opposite case, att < τ the decay of the anisotropy is

Gaussian in form andindependentof τ (or ê):

The motion of the solute in this regime has not yet been
influenced by the solvent medium, and eq 15 is accordingly
identical to the early time limit of free inertial motion at
temperatureT.8 The possibility of evolving rotational temper-
ature, such as occurs in iodine Br X excitation, is not
accounted for in these expressions.
C. Hydrodynamic Treatment. The preceding section

relates the rotational dynamics of the solvent to a reduced
coefficient of rotational friction, which is a property of the
solute-solvent system, without prescribing how to determine
the value of this coefficient. One means of attacking this
problem is through hydrodynamic theory. By treating the
solvent as a viscous fluid continuum and approximating the
solute molecule as an ellipsoid, the coefficient of friction for
rotation can be calculated as a function of the ellipsoid
dimensions and shear viscosityη of the solvent. The result
also depends on the boundary condition assumed at the solute-
solvent interface and is valid in the same limit as the Langevin
treatment; that is, for smallm/M and collision time short on
the time scale of free rotation. Even then, the choice of
boundary condition appropriate to a particular system remains
a source of uncertainty in the result.
Expressions for rotational friction of a prolate ellipsoid of

revolution about an axis perpendicular to the symmetry axis,
which is the case appropriate to the anisotropy of a diatom with
transition dipole parallel to the internuclear axis, were taken
from ref 5 for sticking boundary condition, and the ratio of
slipping to sticking friction is given in ref 10. When the

ê )
πT0
2kTI

(6)

Ω(t) ) 2kT
I
e-êt (7)

∂

∂t
µ̂(t) ) ωb(t) × µ̂(t) (8)

µ̂(t) ) Pe∫0
tdt′ωb(t′)‚R̂µ̂(0) (9)

r(t) ) 〈tr Pe∫0
tdt′ωb(t′)‚R̂〉 (10)

r(t) ) 0.4e-3/2∫0
t∫0t〈ωb(t′)‚ωb(t′′)〉dt′dt′′ ) 0.4e-3∫0

t(t-s)〈ωb(s)‚ωb(0)〉ds

(11)

Ω(t) ) - 1
3
d2 ln(r(t))

dt2
(12)

r(t) ) 0.4 exp(- 6kT
I
(τ2e-t/τ + τt - τ2)) (13)

r(t) ) 0.4 exp(- 6kT
I
(τt - τ2)) ) C exp(- 6kTτ

I
t) (14)

r(t) ) 0.4 exp(- 3kT
I
t2) (15)
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ellipsoid has semimajor axisa and semiminor axisb, one finds
for the reduced coefficient

whereV is the ellipsoid volume (V ) 4/3πab2) andâ ) b/a.
The ratioêslip/êstick may then be found in Table 1 of ref 10 as
a function ofb/a (denoted there byτ). In this hydrodynamic
description, the Stokes-Einstein relationship, which relates
viscosity to the rotational diffusion, is usually invoked:

which follows from eq 16 and the relations of the previous
section. In the stick limit, the geometrical shape factor,fstick,
is equal to2/3 times theâ-dependent factor in eq 16, whilefslip
) fstickêslip/êstick.
D. Gordon’s J- and m-Diffusion Models. The J- and

m-diffusion models8 were developed by Gordon to overcome
any restriction to small angular steps for the free rotation
between collisions, which clearly limits the preceding theories
to relatively high densities. In these purely collisional models,
the interaction of solute and solvent results solely from discrete,
Poisson-distributed events (“collisions”) with collision interval
τcoll. Between collisions, free rotation of the rotor pertains, and
arbitrarily large angular excursions under free inertial motion
are possible at largeτcoll. These features of the Gordon models
are incorporated into the J-coherence model as well. The
distinction lies in how the collision affects the solute angular
momentum,JB.
In the Gordon models, the key to obtaining a closed form

solution for the polarization anisotropy is the assumption that
the direction ofJB is randomized at each collision. In the
m-diffusion model, the magnitudeJ remains constant, while in
the J-diffusion modelJ is also randomized over a thermal
distribution at each collision. In the early stages of this study,
both the m- and J-diffusion models were studied, but the
J-diffusion fitting results provided a clearly superior approxima-
tion to our data, so only J-diffusion is considered in detail here.
The J-diffusion assumption is also more physically intuitive,
since the magnitude ofJB must, in general, be randomized at
least as fast as its direction, when∆JB, the collision-induced
change inJB, is not preferentially perpendicular toJB.
The J-diffusion expression for polarization anisotropy is8

or

where each term in the sum represents the contribution to the
anisotropy of molecules that have undergone exactlyn collisions
up to timet. F0(2)(t) is proportional to the transient anisotropy
following optical excitation of a freely rotating linear rotor with
parallel dipoleµ̂(t):

whereBx andB′ are rotational constants of the rotor in cm-1

and J is the angular momentum quantum number.Bx is the
rotational constant beforet ) 0, which determines the thermal
J distribution, whileB′ reflects the rotational inertia fort > 0,
which controls the rotational velocity.
EachF0(2) function in a given term of the summation in eq

17 corresponds to motion in a specific intercollision interval.
For all intervals following the first collision, the J-diffusion
model postulates an equilibratedJ distribution, soF0(2) is
calculated withBx ) B′. TheJ distribution preceding the first
collision is that of the ground state, however, soBxmust be set
equal toB′′ when using eq 19 to calculateF0(2)(t1) in eq 17.
The τcoll-independent functionsFn(2) in eq 18 were calculated
and stored forn up to 40 and then recalled and combined with
the appropriateτcoll-dependent weighting to calculater(t) for a
given τcoll in fitting the data.
The J-diffusion assumption of angular momentum randomiza-

tion at each collision means that the angular velocities before
and after a collision are uncorrelated (〈ωb(tcoll

- )〉‚ωb(tcoll
+ )〉 ) 0).

Thus, the only contribution to the angular velocity autocorre-
lation function (eq 3) comes from the population which has
suffered no collisions (n ) 0). According to the Poisson
distribution, this population decays exponentially with time
constantτcoll; that is,τ ) τcoll.
E. J-Coherence Model. Although the GordonJ-diffusion

model reproduces the anisotropy functions at both the free rotor
and the diffusion limits and provides a qualitative description
of the continuous transition between those limits, there is no
quantitative connection between the physical parameters of the
solute-solvent system and the calculation. This disconnection
arises from the assumption of completeJ randomization with
each collision, leading to the identification at the end of the
preceding section of theJ-diffusion τcoll with τ, the effective
angular momentum scrambling lifetime, while it is the true
collision interval that is derived from kinetic gas treatments.
The relationship between the two depends profoundly on the
particulars of the case in question, including the masses, moment
of inertia, temperature, and the intermolecular potential.
In order to establish the link between the physical parameters

and the friction (i.e., decay ofΩ(t)), randomization ofJB must
be replaced by an approximation of the specific distribution of
final JBwhich is produced by the dynamics of the actual binary
collisions. This is done in theJ-coherence model,11 in which
the general framework of the Gordon models is retained, but
following thenth collision, the distribution ofJBn+1 is not thermal,
but given by the functionPJB(JBn,T,m), which incorporates a
precise classical treatment of the collision dynamics of the rotor
with a solvent atom of massm, at solvent temperatureT. In
addition to giving the model predictive value, the closer
correspondence to reality of the derived kinetics when including
the partial persistence of rotational coherence across collisions
may be expected to yield quantitatively more accurate anisotropy
functions.
The calculation ofPJB(JBn,T,m) is based upon the bimolecular

collision dynamics of a solvent hard sphere impinging on a rigid-
rotor molecule composed of two hard spheres at a separationr,

êstick ) 4ηV
I

1- â4

â2 (2- â2)

2x1- â2
ln(1+ x1- â2

1- x1- â2) - â2

(16)

τrot ) êI/6kT) fηV/kT

r(t) ) 0.4e(-t/τcoll) ∑
n)0

∞ 1

(τcoll)
n
∫0tF0(2)(t - tn)∫0tnF0(2)(tn -

tn-1)∫0tn-1 ... ∫0t3F0(2)(t3 - t2)∫0t2F0(2)(t2 -

t1)F0
(2)(t1) dt1 dt2 ... dtn-2 dtn-1 dtn (17)

r(t) ) 0.4e(-t/τcoll) ∑
n)0

∞ 1

(τcoll)n
Fn

(2)(t) (18)

F0
(2)(t) ) 〈P2(µ̂(0)‚µ̂(t)free rotor)〉

) 0.25+ 0.75
Bxhc

kT
∑
J

(2J+ 1)×

exp(-
BxhcJ(J+ 1)

kT ) cos(8πB′cJt) (19)
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as illustrated in Figure 2. The collision geometry is defined in
the diatom rest frame at the time of impact, in which frame the
atom approaches with the relative velocityVbof atom and diatom
center of mass. Note that the atom is shown in Figure 2 before
and after impact, while the position of the diatom is shown only
at the time of impact. From conservation laws,∆JB, the collision-
induced change inJB, can be solved analytically as a function
of JB, the relative velocityVb, and impact parameterbB in the
molecular reference frame. The central force nature of the
atom-atom interaction dictates that the impulse received by
the iodine molecule is directed from the point of impact through
the center of the impacted iodine atom, along unit vectorf̂ in
Figure 2. Definingr̂ ) rb/r (a unit vector along the internuclear
axis pointing toward the impacted iodine atom), one finds (see
Appendix)

whereM andm are the masses of the solute molecule and
solvent atom, respectively.f̂ is given in turn byf̂ ) [1/2rb - (bB
+ RVb)]/σj, whereσj is the atom-atom hard-sphere collision
distance, andR is the time of impact relative to the time of
closest proximity between atom and diatom center of mass on
the hypothetical trajectory defined by the uninterrupted extension
of Vb in Figure 2. R is determined byVb, bB, rb, andσj:

Physically, the first term in eq 20 is the contribution of the
center of mass relative motion of atom and diatom, while the
second term represents the effect ofVbrot ) (J/I) × (rb/2 - f̂σj),
the purely rotational component of the velocity of the collision
surface at the point of impact. To highlight this fact, eq 20
may be expressed in the following alternate form:

If (Vb - Vbrot)‚f̂ is negative, the atom and surface are separating
at the point of intersection of the trajectory and the collision
surface, and no collision occurs. In other words,∆JB can only
be in the direction of the torque, which is also the direction of
r̂ × f̂, and there is a collision only when the coefficient ofr̂ ×
f̂ in eq 20 is positive, although either of the two contributions
may be negative. For example, a negative first term and positive

second term represents the collision surface rotating toward and
overtaking a receding solvent atom.
There are potentially four values ofR from the choice of

sign in eq 21 and the two directions ofrb, corresponding to
intersections of the atomic trajectory with the collision surface
for positive and negativeVb‚f̂ on each of the two component
atoms of the solute molecule. The smallest and largestR for
which the argument of the radical is positive represent trajectory
entry and exit points and are both considered as possible
collision geometries in the sampling process.
From the expression for∆JB(JB,Vb,bB,m), one obtains the required

distribution PJB(JB,T,m) as the probability distribution ofJB +
∆JB(JB,Vb,bB,m) when the Maxwell-Boltzmann distribution of
relative velocity and corresponding appropriate distribution of
impact parameter are taken into account. In practice, a sample
fromPJB(JB,T,m) is found numerically by randomly sampling from
theVb andbB distributions and applying eq 20, with an additional
weighting of collision geometries by the total effective relative
velocity at impact (Vrel

eff), includingVbrot of the collision surface
for a rotating diatom. This last effect induces also a J
dependence of the total collision probability, which is recorded
separately from thePJB(JB,T,m) samples. The anisotropic collision
cross section is accounted for by samplingb over a fixed area
for all directions ofVb.
To determine the time evolution of both the anisotropy and

the angular velocity autocorrelation function of the thermal
sample at collision frequency 1/τcoll, rotational trajectories of a
large number of diatoms (here, 100 000) are recorded at time
steps no larger than 0.04τcoll, with free rotation at fixedJB
interrupted by Poisson distributed collisions, adjusted for the
J-dependent total cross-section factor. A newJB is then selected
from PJB(JB,T,m) which determines the evolution until the next
collision.
In the lab frame, the distribution of atomic velocity,Vba, is

spatially uniform and isotropic with respect to the internuclear
axis, andbB is uniformly distributed in the plane perpendicular
to Vba, while Vb ) Vba - VB is anisotropically distributed for nonzero
diatom velocity,VB. The rigorous expression forVrel

eff in the
limit of infinitesimal dVba is Vrel

eff ) [Va/(Vba‚f̂)](Vb - Vbrot)‚f̂. How-
ever, by includingVB explicitly in the calculation, the distribution
PJB(JB,T,m) averaged overV was found to differ negligibly from
the calculation for isotropicVb, while V and J where also
uncorrelated over the range of populatedV. Therefore, the final
anisotropy simulations were simplified by removing explicit
dependence onV. Also, because the evaluation of the collision
geometry is limited to the instant of impact only, some collisions
will be included in which the iodine and rare gas atom may
overlap at an earlier or later point in their free particle motion.
The correlations implied by such trajectories are rare except at
very high rotational velocities and are ignored. These two
approximations greatly reduce the time and complexity of the
calculations.
The implementation of the equations for binary collision (eq

20 and related equations in the appendix for changes inVb and
VB) was checked for energy and linear and angular momentum
conservation. To test sampling in the final anisotropy calcula-
tions, both the time-averagedJ distribution for a single iodine,
and the ensemble average after many collisions were confirmed
to be close to Boltzmann (within 2%) independent of collider
mass. For calculations in which the iodine velocity was tracked,
its time average after many collisions was also within 2% of
the theoretical value.
From the J-coherence calculations, both the anisotropy and

Ω(t) are obtained.Ω(t) is single exponential in form, and its

Figure 2. Diagram of a typical hard-sphere atom-diatom collision
underlying the J-coherence model calculations. Quantities that are
required in the calculations are labeled in the figure and defined in the
text.

∆JB ) (Mr(Vb‚ f̂) + 2(JB × f̂)‚r̂

2+ M/m- (r̂‚ f̂)2 )(r̂ × f̂) (20)

R ) Vb‚ rb
2V2

( 1
V{-[1- (Vb‚r̂

V )2](r2)
2

- b2 + bB‚ rb + σj2}1/2 (21)

∆JB ) ( Mr(r̂ × f̂)

2+ M/m- (r̂‚ f̂)2)(Vb - Vbrot)‚ f̂ (22)
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lifetime τ can be compared withτcoll to quantify theJ scrambling
potency per collision of each solvent. It is found that, for the
parameters used here in the J-coherence model (M ) 253.8 amu,
r ) 3.11 Å, the average separation of the iodine nuclei forV )
9 in the B state,T ) 296 K, andσj ) 3.52 Å for iodine-argon
and 3.07 Å for iodine-helium, from the1/2kT turning points of
I atom-rare gas potentials found in the literature24,25), τ is
proportional toτcoll with proportionality constants of 5.5 for
argon and 43 for helium. That is, the angular velocity of an
average iodine molecule persists through∼5.5 collisions with
argon and 43 collisions with helium.
In Figure 3 are shown the theoretical J-coherence and

J-diffusion anisotropy decays of iodine in argon and in helium
which correspond to a single value ofτ of 3.0 ps. The (scaled)
angular velocity autocorrelation function is also plotted. For
J-diffusion, there is no dependence on the solvent, andτcoll is
also 3 ps. The J-coherence anisotropies are very similar in
appearance for the two gases, although they result from collision
intervals which differ by a factor of 8. The most noticeable
difference of the J-diffusion anisotropy is the higher dip and
much longer tail.
If the collider mass in the J-coherence model is increased

further, τcoll must grow longer for the sameΩ(t). Although
the anisotropy rebound increases in height, and the final decay
slows down, the coherent dip does not change and the anisotropy
remains below the J-diffusion anisotropy at all time. Even in
the limitm. M (m) 4000 amu),τcoll has only reached 2.3 ps,
demonstrating the continued retention of coherence across
collisions. It can be concluded from these observations that
there will be density regimes for most real systems where the
difference between J-diffusion and J-coherence calculations will
be important.

III. Experimental Section

A. Apparatus. Measurements were performed on iodine
vapor at room temperature in pressures of argon or helium
ranging from 0 to 3000 bar. The high-pressure apparatus has
been described previously.26 For the present studies, a new laser
system was used. An amplified Ti:sapphire laser provided a
train of∼700µJ pulses of∼70 fs duration (fwhm), atλ ∼ 786
nm, and 1 kHz repetition rate. A probe pulse (λ ∼ 393 nm)
was produced by frequency doubling a fraction of the amplified
fundamental, while the remainder of the fundamental was used
to pump an optical parametric amplifier. The IR output of the
OPA was doubled to yield the pump pulses of center wavelength
near either 613 or 622 nm. The probe beam was directed
through a computer-controlled optical delay line and then co-
linearly recombined with the pump beam and directed into
the high pressure cell (see Figure 4). With appropriate
polarization and attenuation, pulse energies at the entrance to
the cell were typically∼3-8 µJ for the pump and 1-3 µJ for
the probe.
The pump pulse excited the ground state I2 molecules to the

B state, from which the probe pulse could subsequently induce
transitions to the ion-pair-state manifold (see Figure 5). Fast
collisional relaxation is known to occur to the lowest state within
this manifold, the D′ state, which then fluoresces to the A′
state.27 Fluorescence was collected perpendicular to the direc-
tion of beam propagation through a 0.5 m monochromator and
detected by a PMT. Scattered pump light was further reduced
by use of a UV pass interference filter. The detection wave-
length was tuned to the peak of the D′ f A′ fluorescence band,
which varies from 342 to 370 nm as a function of solvent species
and pressure, due to solvation of the ion-pair D′ state. Signals
from the PMT and a photodiode which monitored pump pulse
intensity were time-gated and averaged by a boxcar integrator,
and their ratio was recorded as a function of pump-probe time
delay. To reduce the occurrence of temporally displaced signals
that were observed to arise from specular back-reflection off
each surface of the cell exit window, this window was replaced
by a plug designed to serve as a beam dump.

Figure 3. Theoretical anisotropy decays of iodine which correspond
to angular velocity autocorrelation functions with a single decay rate
1/τ, whereτ ) 3 ps. Comparison of J-coherence of iodine in argon
and in helium, with J-diffusion and Langevin treatments (no solvent
dependence). The exponential decay of the angular velocity autocor-
relation functionΩ(t) of all four is also shown. Here, the Langevin
model deviates at early time since a constant rotational temperature of
296 K has been assumed. The other models incorporate rotational
equilibration starting from the initial ground-state distribution.

Figure 4. Experimental setup for the measurement of polarization
anisotropy by pump-probe LIF of iodine in high-pressure rare gases:
P, polarizer; C, Soleil compensator; SM, stepper motor; D, dichroic
mirror; L, lens; GI, gas inlet; HPC, high-pressure cell; F, filter. The
probe beam passes through the translation stage delay line and the
compensator.
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For these studies of the time evolution of the spatial alignment
of B-state population, pump and probe beams were both linearly
polarized by passage through high-quality Glan-laser prism
polarizers (extinction ratio 10-5) and the probe polarization
adjusted to be either parallel or perpendicular to that of the
pump, yielding transientsI| andI⊥, respectively (see Figures 6
and 7). Through the course of these experiments, several
different arrangements were employed to achieve the probe
polarization adjustment. Since the principal uncertainties in the
experimental anisotropy at a given pressure are those introduced
by laser power fluctuations or drifts, or temporal shifts between
parallel and perpendicular transients, the optimized arrangement,

as represented in Figure 4, entailed use of a Soleil compensator
set to serve as a half-wave plate for the probe wavelength and
mounted on a computer-controlled rotation stage. Twenty to
40 pairs of single scans (duration∼1 min each) in alternating
parallel and perpendicular configuration were then recorded and
averaged to produce a matched pair ofI| and I⊥ transients.
The transients were experimentally checked (by measuring

transients in polarization-resolved fluorescence) for potential
influence of the polarization of the detected fluorescence caused
by ion-pair state alignment, and none was found. This is
understandable at nonzero pressures, for which the time scale
of fluorescence emission is much longer than that of rotational
scrambling by collisions. Therefore, as a further assurance of
isotropic fluorescence, measurements were performed with a
minimum buffer gas pressure of 1 bar.
B. Data Analysis. As in ref 11, data sets were analyzed by

least-squares fitting to collisional model calculations of the
experimental polarization anisotropy,r(t) ) (I|(t) - RI⊥(t-t*))/
(I|(t) + 2RI⊥(t-t* )), in order to extract the model collision
interval,τcoll. For this paper, the fitting procedure was refined,
and all data were reanalyzed. A total of four adjustable
parameters were used in the fitting: (1)τcoll; (2) a normaliza-
tion factorR to account for experimentally induced intensity
variations; (3) a time shiftt* of the perpendicular transient; and
(4) t0, the zero of the time delay axis or time at which pump
and probe pulses coincide in the sample.R was included as a
fitting parameter because its value depended sensitively on
experimental conditions. For the experimental setup shown in
Figure 4,R was determined by the variation of the reflectance
of the dichroic mirror (D) with polarization of the probe laser
and was expected to remain constant for a given series of
experiments at fixed alignment. Thus, its constancy in such a
series serves as an important indicator of the success of the
fitting.
When fitting the data without the third parameter, large peaks

in the weighted residual were commonly observed to coincide

Figure 5. Schematic potential energy diagram of the iodine molecule
indicating the pump-probe-LIF sequence employed for anisotropy
measurements of iodine in supercritical rare gases. The lowering of
the energy of the D′ state by solvation, as represented by the dashed
line, varies with rare gas species and density.

Figure 6. Experimental polarization-resolved transients of iodine in
argon at the densities and pressures indicated. For all three,λpump∼
622 nm andλprobe∼ 394 nm.

Figure 7. Experimental polarization-resolved transients of iodine in
helium at the densities and pressures indicated: top,λpump∼ 620 nm
andλprobe∼ 394 nm; center and bottom,λpump∼ 613 nm andλprobe∼
393 nm.
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with the transient rises. These are symptomatic of a small
misalignment of the time axes of parallel and perpendicular
transients. Refitting with a floating relative temporal alignment
parameter largely eliminated such anomalies in the residuals
by shifts ofe20 fs for over 95% of all experimental anisotropy
data sets. The general evolution of the anisotropy is not
sensitive to such small shifts, but their presence can severely
influence the fit results, as parameters are optimized specifically
to minimize the residuals of the few points on the rise which
dominate theø2 sum. In some cases, oscillations matching the
vibrational oscillations of the transients were also detected in
the residuals or were visible directly in the anisotropy, and these
can be caused by the same small shift between polarizations.
The source of these shifts is apparently a systematic change in
optical path caused by rotation of the compensator or some lens
or window birefringence. This is consistent with the fact that
the shift values derived from the fits remained fairly constant
within any given series of experiments performed over the
course of several days.
The fourth fitting parameter ist0, the point of zero time de-

lay between pump and probe pulses. As seen in Figure 5, att0
the vibrational wave packet is prepared at the inner turning
point of the B-state potential, while the probe window is at or
near the outer turning point. Thus, the rise of the signal in-
duced by the probe is delayed fromt0. The time evolution of
the anisotropy begins at the instant of creation of the initial
sample alignment, however, and therefore a correct fit of the
anisotropy yields a value oft0, independent of the time at which
the population is probed. The relationship oft0 to the rise of
the transient can depend only on the pump and probe wave-
lengths, the energy of the ion-pair state reached in the probe
transition, and the pulse shapes and molecular response. Thus,
as forR, consistency under fixed experimental conditions of
the values oft0 serves as a significant test of the quality of the
fitting.
The results of the fitting were also sensitive to the form

of weighting used in evaluating the best fit criterion. The
weighting was propagated from the noise of the original
fluorescence transients by assuming a simple model of two noise
components: one independent of fluorescence intensity and one
proportional to the intensity. The coefficients were determined
by examination of the intensity dependence of the noise in
several transients and held fixed at those values. The back-
ground intensity of each transient was fixed by an average over
the measured baseline at negative time. The weighted residuals
were examined for randomness as the primary indicator of a
satisfactory fit.
Fits to determine the Langevin friction coefficient 1/τ from

eq 13 were carried out on the experimental anisotropies with
R, t*, and t0 given by the collision model fits. Since the calcu-
lation assumes a constant rotational temperatureT, while this
value ranges from 220 K up to 296 K as a function of delay in
each experiment,T was included withτ as a fitting parameter.
The same fit weighting was used as with the collision model
fitting.
The convolution of the molecular response with the cross-

correlation of pump and probe pulses was tested for a response
width of up to 230 fs fwhm and found to have a negligible
effect (∆r < 0.003) on the more slowly evolvingr(t) in these
experiments. Convolution was therefore disregarded in the
analysis, and no efforts were made to minimize the pulse widths
at the sample, which varied depending on the OPA alignment
and configuration of optical elements for polarization adjust-
ment.

IV. Results

Anisotropy measurements were performed in two distinct
pump wavelength ranges in both argon and helium. At pump
wavelengths of 622( 2 and 613( 2 nm, iodine is excited
primarily from theV′′ ) 3,4 levels of the X state into B,V′ )
7-9 and V′ ) 9-11, respectively. A selection of pairs of
pump-probe transients in the two solvents (Figures 6 and 7)
shows the range of temporal profiles observed as the pressure
was varied. The differing amplitudes of vibrational oscillations
(period∼300 fs) are due principally to different pulse widths.
The B-state lifetime shortens dramatically at high solvent density
due to collision-induced predissociation.28 Thus, the range of
time delay for which the anisotropy could be determined to high
signal-to-noise grows progressively shorter as the solvent
pressure increases. However, the weighting applied allowed
the full transients to be included in the fits.
Collision intervals according to the J-diffusion and J-

coherence models were extracted from all data sets as described
in the previous section. Examples of J-coherence fits for data
ranging from low to high densities are shown in Figure 8 for
argon and Figure 9 for helium, with the resulting values ofτcoll.
In the 622 nm experiments, data were acquired as described in
section III, by alternating parallel and perpendicular single scans,
and the normalizations were in the range 0.85-1.05, dependent
on the experimental arrangement. For experiments under fixed
conditions, variations were usually within(2%. For the 613
nm experiments, parallel and perpendicular transients were
recorded consecutively, so the normalization varied more widely,
especially with slow changes in cell transmission due to window
burning or adjustments in monochromator slit width. The data
acquisition rate also differed at the two pump wavelengths, so
different sets of constants were determined to define the fit
weighting.
The collision rates (1/τcoll) in argon and in helium determined

from J-coherence and J-diffusion fits are plotted in Figures 10
and 11 as a function of number density. (The J-diffusion rates
can be seen more clearly in Figures 12 and 13.) The densities
are determined from measured pressures using experimental
density/pressure data.29,30 Also shown are calculated hard-
sphere ideal-gas collision rates and Enskog hard-sphere collision
rates. Both of these are equal to 1/τcoll ) πσj2FVjr g(σj),31 where
σj is the collision radius andVjr is the mean relative velocity
[8kT(πµ)-1]1/2 (for reduced massµ of solvent and solute).g(σj),
the radial distribution function at contact, is equal to 1 for an
ideal gas, while the Enskog value ofg(σj) for a solute at low
concentration in a solvent of hard-sphere diameterσs has been
given by Schweitzer and Chandler32 and may be expressed in
terms of the parametery) Fπσs3/6 (fractional occupied volume)
as

The value ofσs ) 2.16 Å used for helium was derived by
reproducing the experimental compressibility29 using the Car-
nahan and Starling equation of state.33 This value ofσs implies
an iodine atom diameter of 3.98 Å, given the iodine-heliumσj
of 3.07 Å. The argon density/pressure data are not well-
represented by hard-sphere behavior due to a substantial
attractive well, so the argon diameter is taken to account for
the difference inσj between iodine-helium and iodine-argon
with a fixed iodine diameter. This leads to a value ofσs for
argon of 3.06 Å.

g(σj) ) [1+ (1-
3σs

2σj )y+
σs

2σj(-1+
σs

σj )y2]/(1- y)3 (23)
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V. Discussion

Looking at the anisotropy decays of Figures 8 and 9, one
sees that the general features of the experimental anisotropies
across the full range of densities are well-reproduced by the
theory. The free-rotor anisotropy, characterized by a coherent
dip (at which the average rotor is approximately perpendicular
to its initial direction) followed by a gradual return to the
asymptotic value of 0.1, is approximated by the 1 bar argon
measurement in Figure 8. The position of the dip is fixed by
the angular momentum distribution and the moment of inertia

of the rotor, and the dip minimum at∼2 ps corresponds to the
cold J distribution att0

+ (see section IIA) andI of the B,V′ )
9 state. The asymptotic value reached in the absence of
collisions is due to the stationary sine-squared distribution ofJB
with respect to the pump polarization vector.r(t) clearly reflects
the ||,|| pump-probe dipole sequence. (The uncertainty in

Figure 8. J-coherence fits of experimental polarization anisotropies
of iodine in argon. The number density of the solvent and the
J-coherence collision time are shown for each anisotropy. (a) The effect
on the long time asymptote at low density;λpump ) 623 nm. (b)
Examples of the qualitatively distinct anisotropy functions observed
by varying solvent density;λpump is 613 nm for the 300 bar data and
623 nm for the other three.

Figure 9. J-coherence fits of experimental polarization anisotropies
of iodine in helium at a range of densities. The number density of the
solvent and the J-coherence collision time are shown for each
anisotropy.λpump is 623 nm for the 990 bar data and 613 nm for the
other three.

Figure 10. Solvent density dependence of the collision rates of iodine
in argon derived from experimental anisotropies by the two collision
models discussed in the text. Different symbols correspond to inde-
pendent series of experiments. The hard-sphere ideal-gas and Enskog
collision rates are shown for comparison. The Enskog curve is plotted
a second time scaled by a factor of 1.5.
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values ofτcoll at 1 bar is large, since the real effect of collisions
on the time scale of the experiments is within the noise.)
With the increase of solvent pressure, collisions with bath

molecules begin to raise the rotational temperature and cause a
loss ofJBalignment. At sufficiently low pressures, the coherent
inertial motion changes little over times sufficient for angular
excursions of significant fractions of 2π, so that the anisotropy
dip remains clearly visible, but the long time anisotropy decays
to 0 at a rate that increases with the pressure (50 and 100 bar
of argon, Figure 8, and 30 and 990 bar of helium, Figure 9).
The initial anisotropy decay is subject to competing effects, in
that collisions lengthen the angular path the rotor axis must
traverse to reach perpendicularity but raise the average angular
velocity. The first effect would move the dip to later time while
the second would move it to earlier time. For this reason, the
dependence of the initial decay onτcoll is weaker than would
be the case if the internuclear distance did not change from X
state to B state.

At higher pressures, the dip is gradually washed out when
collisions scramble the angular momentum before the initial
dipolealignment is totally lost (first1/4 period of rotation). At
very high pressures, the dipoles undergo a relatively slow
monotonic angular diffusion toward isotropy, reflected by an
exponentially decayingr(t). The data in Figures 8 and 9
illustrate very clearly, however, that the transition from low- to
high-pressure limits has a very different density dependence in
the two solvent gases. For example, the anisotropy dip has
completely vanished by a density of 7.3 argon atoms/nm3 (300
bar). Above this pressure of argon, it is possible to obtain a
good fit of the anisotropy using the Langevin friction model
and eq 13. The friction coefficient is not well determined,
however, since the decay is essentially Gaussian, corresponding
to the short-time, friction-independent limit of eq 15. In
contrast, the anisotropy dip in helium is still very evident at 20
atoms/nm3 (1300 bar). Even at 26.6 helium atoms/nm3, a fit to
the monotonically decaying anisotropy of the Langevin friction
model shows a significant deviation in the residual for delays
of 2-4 ps, indicating the survival of coherence of rotational
motion to this time. At 16.7 nm-3 in argon, the anisotropy is
approaching exponentiality,11 while at the highest densities
reached in helium, the anisotropy is clearly nonexponential.
J-diffusion anisotropy fits converge to the same temporal

profiles in the low- and high-density limits, though the extracted
collision rates are much lower, as shown in Figures 10 and 11
and discussed in section II. In the intermediate-density regime,
Figure 3 shows that the two models give quantitatively different
behaviors, especially in their long time asymptotic approaches
to r(t) ) 0. When the normalizationR is floated in fitting this
data,R values at intermediate densities are typically 3-5% lower
for J-diffusion than for J-coherence fits, in order to compensate
for this difference. A slightly greater emphasis on the experi-
mental control ofR than in the current data could permit a clear
distinction to be made between the two types of long time decay.
Presently, the difference in fit quality results predominantly from
the ability to reproduce the detailed structure of the anisotropy
up to∼4 ps. After refitting all data in a consistent manner to
the two models, the fit quality differed significantly (∆ø2r >
10%) for 39 out of 90 anisotropies, with J-coherence giving
the better fit in 29 of those cases.

Figure 11. Solvent density dependence of the collision rates of iodine
in helium derived from experimental anisotropies by the two collision
models discussed in the text. Different symbols correspond to inde-
pendent series of experiments. The hard-sphere ideal-gas and Enskog
collision rates are shown for comparison.

Figure 12. Density dependence of the reduced friction coefficients of
iodine in argon, derived from the J-coherence and J-diffusion models,
and the Langevin model (eq 13). The hydrodynamic friction for stick
and slip boundary conditions is calculated as described in the text. The
solid line is the Enskog collision rate scaled by 1.5/5.45) 0.275.

Figure 13. Density dependence of the reduced friction coefficients of
iodine in helium, derived from the J-coherence and J-diffusion models.
The hydrodynamic friction for stick and slip boundary conditions is
calculated as described in the text. The solid line is the Enskog collision
rate scaled by 1/43.4) 0.023.
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The anisotropy fits also provide a measurement oft0. In a
preliminary effort to compare the experimentalt0’s to the phase
of vibrational oscillations of the transients, no consistent
relationship was found. However, a pattern did emerge in the
t0 values as measured relative to the midpoint in the rise of the
parallel transient. This point would be fixed in time, indepen-
dent of the pulse cross-correlation, in the case of a step-function
molecular response. For the actual molecular responses, as seen
in Figures 6 and 7, it is taken as an approximation only. For
the series of experiments for excitation near 613 nm, the mean
values of t0 were -36 fs for argon (number of anisotropy
measurements,n) 13, rms deviation oft0, σ ) 18 fs) and∼-64
fs for helium (n ) 13, σ ) 10 fs), for a weighted average of
-54 fs. For series of comparable quality atλ ∼ 622 nm, the
mean values were-102 fs for argon (n ) 21, σ ) 27 fs) and
-89 fs helium (n ) 12, σ ) 10 fs), with weighted average
-93 fs.
These results are consistent with the general trend expected

from consideration of Figure 5. First, the transient rise is
delayed with respect tot0. Second, if the probe wavelength
opens a Franck-Condon window near the turning point of the
wave packet prepared by the 623 nm pump pulse, the 613 nm
wave packet will reach the window first due to its higher
velocity across the vibrational potential well. A classical
calculation of vibrational trajectories at appropriate energies
from their respective inner turning points tor ) 3.39 Å (outer
turning point at 623 nm) gives delays of 121 fs at 613 nm and
155 fs at 622 fs. The difference in these values of 34 fs is
close to the average difference in experimental delays fromt0
to the transient midrise of 39 fs. Although the calculation is
done on an approximate potential, the half-period of vibration
is within 5 fs of the known value atV′ ) 8, J ) 51. A
comparison of the absolute values of the calculated and
experimental delays is not warranted without a detailed analysis
of the transient waveforms. Further characterization of this
behavior offers a fruitful avenue of investigation of the temporal
properties of pump-probe signals, which displayed some
unexplained features in a recent ZEKE study of iodine with
carefully determinedt0.34

In addition to accurately reproducing the temporal evolution
of the anisotropy, a primary goal of the J-coherence model is
to be able to predict its dependence on the properties of the
solvent. In Figures 10 and 11, the Enskog hard-sphere collision
rates are shown as derived independently of the experiments.
For helium, in which collisions with iodine are well-represented
by a hard-sphere potential, the experimental J-coherence col-
lision rate is in very good agreement with the Enskog rate, within
experimental uncertainty over the entire density range. The rates
in argon are consistently higher than the Enskog rates, showing
good agreement with a scaling of the rates by a factor of 1.5.
The rates determined from molecular dynamics calculations35

(which were plotted in Figure 4 of ref 11) show the density
dependence of collisions in pure argon, based on the decay of
the argon translational velocity autocorrelation function. These
are close in magnitude to the J-coherence iodine-argon collision
rate, but may not be quantitatively compared to them due to
differences in collision potentials and relative velocity.
In the preceding comparison of J-coherence rates with Enskog

rates, the lack of precise agreement in the argon data is not
surprising, considering the sensitivity of the Enskog rates to
the choice of model parametersσj andσs. Rather, the funda-
mental point that should be emphasized is that even the
unrefined Enskog estimate of the gas kinetic collision rate would
permit prediction to close to experimental precision of both the

solvent and the density dependence of the transient anisotropies
displayed in Figures 8 and 9, by J-coherence calculations. This
is not possible with the J-diffusion model, for the reasons
discussed in section II.
Both J-coherence and J-diffusion, as models of molecular

rotation, associate aΩ(t) with eachr(t). Thus, we also obtain
Ω(t) from the fits, and its decay rateτ determinesê by analogy
with the Langevin equation result (τ ) 1/ê). In Figures 12 and
13, the fitting results are plotted in the form of friction
coefficient versus density for argon and helium. For compari-
son, the limiting cases of hydrodynamic friction and fits to the
Langevin model (eq 13) are also shown (see below). The solid
curves in the figures are scaled plots of the respective Enskog
collision rates. This is the form of the density dependence that
is expected in the diffusion limit, whereê ∝ 1/Dr,36 when the
rotational diffusion coefficientDr is assumed proportional to
the Enskog translational diffusion coefficient. Note that the
friction coefficient of argon is∼8-10 times larger than that of
helium at equal density.
We first note from these figures that the friction coefficients

determined from the two collision models, and from the
Langevin model also shown for argon, are similar in magnitude,
indicating the general kinematic relationship between angular
displacement and angular velocity that transcends the details
of the dynamics or nature of the collider and links the form of
the anisotropy to that ofΩ(t). Nonetheless, systematic differ-
ences in the density dependence of friction given by the two
collision models do clearly reflect the details of the dynamics.
For both helium and argon, the ratio of J-coherence to J-diffusion
friction increases by roughly a factor of 3-4 over the density
range studied. It is interesting that the J-diffusion friction shows
a faster rise at low density and then drops back to be less than
or equal to the J-coherence friction at the highest densities. The
J-coherence results appear more consistent with Enskog curves
over the entire density range.
The results of a selection of fits to Langevin theory are shown

for all densities for which a meaningful value of the friction
coefficient can be derived. An example of such a fit from ref
11 is reproduced in Figure 14, showing also the different limiting
forms and comparing with other relevant temporal functions.
The friction values plotted in Figure 12 resulted from refitting
as described in section III for consistent comparison with the
collision model fits. The rotational temperatures obtained range
from 230 to 290 K, consistent with a compromise between the
low rotational temperature at early time and the thermalization
induced by collisions. Only at the highest helium density was
the Langevin fit satisfactory, but the friction coefficient was
not well-determined. In argon, the Langevin friction is reason-
ably well determined above a density of∼12 nm-3. The
lifetime of Ω(t) at this density is of the order of 1 ps, and the
collision interval is ∼160 fs. Thus, the Langevin theory
continues to fit the anisotropy and give values of the friction in
close agreement with the results of the collisional models, until
the correlation of the angular velocity survives over an angular
trajectory of∼50° for the average molecule. This angle for
coherent motion is much larger than the expected range of
validity for small-angle stochastic models.
At the highest density in helium,τ is still >1.6 ps, corre-

sponding to a roughly 90° rotation during the correlation
lifetime. The helium results are thus perfectly consistent with
the range of validity of the Langevin theory observed for the
argon data. This shows clearly that the proper comparison must
be based upon the correlation timeτ and not the collision time,
which reaches∼40 fs in helium. In 40 fs, the average molecule

4168 J. Phys. Chem. A, Vol. 102, No. 23, 1998 Baskin et al.



rotates only∼2°, well within the range of a small angle
approximation, but the weak effect of each helium collision on
the iodine angular velocity allows relatively free (coherent)
rotation to take place over angles approaching 90°.
The hydrodynamic range, from slip to stick boundary

conditions, was calculated for a prolate ellipsoid as described
in section IIC. The dimensions of the ellipsoid chosen to
approximate the iodine molecule were such that the semimajor
axis and volume were equal to those of the hard-sphere iodine
rotor used in the J-coherence model (3.54 Å and 63.9 Å3, leading
to an axial ratio of 0.585). Values for the shear viscosities of
argon and helium were taken from the literature.37-39 Substitu-
tion in eq 16 givesêstick ) 4936η ps-1, where the viscosity is
in units of poise, and interpolation in Table 1 of ref 10 gives
êslip/êstick ) 0.162. These relations are plotted in Figures 12
and 13. In both, the experimental friction values at high density
fall in the lower half of the hydrodynamic range. This
correspondence demonstrates that the solvent dependence at high
density is well described by the single fluid property of shear
viscosity as required by the hydrodynamic theory.
In argon, the viscosity varies strongly with density, and the

relationship of the experimental friction to the hydrodynamic
range is fairly constant over a wide range of density. If the
point at which the scaled Enskog curve crosses the slip friction
curve is taken as a simple (but arbitrary) measure of the limit
of validity of the hydrodynamic treatment, the lower bound in
argon is found at∼3 nm-3, where the collision times from the
Enskog fit are on the order of 800 fs (average free rotation:
∼40°). In helium, where the viscosity varies little with density,
the lower limit of hydrodynamic validity is at much higher
density (∼12 nm-3) and collision rate (τcoll ∼140 fs) than in
argon but at similarτ (∼5 ps). These values indicate that, as
for the Langevin treatment above,τ is the parameter that
characterizes the transition from coherent to diffusive motion.
At this τ, however, the anisotropy is actually far from the
diffusive limit, as seen in Figure 3.

The range of angular velocity correlation times given by the
rough hard-sphere fluid treatment of Chandler40 was calculated
in ref 11 for spheres of volume equal to that of iodine (63.9
Å3) and r ) 3.11 Å. This treatment applies to a pure fluid,
however, and is not applicable to the case of a solute-solvent
system such as iodine solvated in argon. However, the kinetic
theory of Evans et al.41 for the calculation of orientational
correlation times deals with exactly this problem, as well as
that of the pure fluid of rotors. This theory gives expressions
for the orientational correlation time for thelth rank spherical
harmonic for hard ellipsoids in a mixture of hard ellipsoids and
hard spheres, in the high density regime (τrot . τ). For the
case of the anisotropy (l ) 2) of a single rotor in a bath of
spheres, and using the diffusive-limit relation betweenτrot and
ê (see section IIB or IIC),ê is given in eq 54 of ref 41 as

whereV is the ellipsoid volume, andε ) (a2 - b2)/b2, for
semimajor and semiminor axes of lengtha andb. The factor
λA,D
1,1 is an integral over atom-diatom collision geometries
which depends on the shape parameterε and moment of inertia
of the ellipsoid and radial distribution function at contact and
reduced massµ of the collision pair. Equation 55 of ref 41
gives the approximation for small, light solvent atoms that we
use here:

Note thatê as given by eqs 24 and 25 depends on density as
Fg(σj) and so scales precisely with the scaled Enskog curves
plotted in Figures 12 and 13.
Using the same iodine ellipsoid as used in the hydrodynamic

calculations, and eq 23 with the appropriateσs for g(σj), ê(F)
was calculated for iodine in argon and iodine in helium. These
are equal to 1/6 and 1/3.5, respectively, times the scaled Enskog
curve through the corresponding J-coherence friction values
(e.g., at 20 nm-3, ê is 0.53 ps-1 in argon and 0.092 ps-1 in
helium). Although we used the small collider limit in these
calculations, this discrepancy is similar to that found by Evans
et al. (i.e., factors ranging from 1.3 to 5.6) between their
theoretical values and experiment (including molecular dynamics
calculations), leading to their conclusion that the kinetic theory
neglects part of the frictional drag. The comparison with the
present experimental values is consistent with this conclusion
and indicates that the source of the discrepancy is not due to
neglect of ring collisions or neglect of “chattering” collisions
(multiple collisions of a single solvent and solute without
intervention of a third body), both of which are common to the
J-coherence treatment.

VI. Conclusion

In this work, the dynamics of rotational motion have been
studied in real time in solvent environments ranging from
isolatedmolecule toliquid densities. With femtosecond time
resolution, both inertial and diffusive aspects of the motion are
observed, displaying the vibrational and coherent rotational
motions. Many previous studies of rotation in liquids have
focused on motion on longer time scales, reaching the pico-
second regime.42,43 In these studies, only diffusive behavior
manifested by exponential anisotropy decay was observed. Even

Figure 14. Illustration of a Langevin theory fit to experimental
polarization anisotropy (iodine in 1500 bar supercritical argon) from
ref 11. The long and short time limiting behaviors of the cumulant
approximation (eq 13) are represented by the two labeled curves, where
the labels are the appropriate exponents in the expressionsr(t) ∝ ex.
AVCF is the angular velocity autocorrelation function, normalized to
0.4 att ) 0. The corresponding J-coherence fit and free rotor anisotropy
are also shown.

ê ) 3FVx kT
2πI

ε
2

x1+ ε
λA,D
1,1 (24)

λA,D
1,1 )xµb2

I
g(σj)

4ε2 {3+ ε + 1

xε
(ε2 - 2ε - 3) arctan(xε)}

(25)
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for time resolution subsequently extending into the subpico-
second domain, the anisotropy was diffusive in nature.44 More
recently, evidence of nonexponential, but monotonic, anisotropy
decays at early time has been presented, using fluorescence up-
conversion techniques to measure the temporal anisotropy of
aniline in a series of molecular solvents.45

In the present work, the chosen diatomic solute and mon-
atomic solvent form a well-defined system in terms of inertial
properties, transition dipoles, and potential functions, permitting
relatively unambiguous comparisons with theory. The J-
coherence bimolecular collision model has been developed to
allow the full range of observed forms of the anisotropy decay,
from free rotational motion to rotational diffusion, to be treated
in a unified manner. This model provides a clear prescription
for relating the hard-sphere properties of the solvent and solute
to the friction. The density dependence of the coefficient of
rotational friction derived from fits of experimental anisotropies
is well-described, at least semiquantitatively, over the entire
experimental density range for both solvents studied, starting
from the Enskog hard-sphere collision frequency.
The friction coefficients obtained from J-coherence, Gordon

J-diffusion, and Langevin-Einstein analyses are similar for the
highest densities of argon, for which the anisotropy can be
effectively described without accounting for the effects of large-
angle coherent rotational motion. In contrast, the high-density
limit is not reached in helium, for which all anisotropy decays
are not only nonexponential but also nonmonotonic. We
conclude that the density cutoff for applicability of diffusive or
continuum treatments is such that the angular trajectory for
averageJ in timeτ ) 1/ê is∼ 50°. In other words, the coherent
rotational motion is persistent for up to∼50° (i.e., there is
memory in the solute motion), and this far exceeds the small-
angle assumption invoked in stochastic theories.
Because the J-coherence model explicitly treats the collisional

friction, it provides the correct relationship between the
rotational motion and the time scale of hard-sphere collisions,
τcoll. For example, theτcoll values from J-coherence fits in argon
ranged from a factor of∼2.5 to 7.5 higher than those from
J-diffusion fits and from∼10 to 45 times higher in helium.
Likewise, since the constant ratio between the hard-sphere
collision frequency and the rotational friction coefficient deduced
from J-coherence theory is determined explicitly from the
physical properties of the solvent, the onset of the high-density
regime can be predicted from knowledge of the true collision
frequency.
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Appendix

The expression (eq 20) for the change in angular momentum
of a hard-sphere diatom produced by collision with an atom is
derived in this appendix. The collision geometry and physical
parameters used in the derivation are as represented in Fig-
ure 2. The frame of reference used is that in which the di-
atom center of mass is initially at rest, soVb is the precollision
relative velocity. The final velocities areVb′ andVB′ for atom
and diatom. The collision imparts an impulseMVB′ in direc-
tion f̂ at the point of impact on the diatom, producing a change
in angular momentum of∆JB ) (rb/2 - f̂σj) × MV′f̂ )
1/2MV′(rb× f̂).

The conservation of linear momentum in the formVb′ ) Vb′ -
(M/m)VB′ can be used to eliminateV′ from the conservation of
energy

to give

and from the conservation of angular momentum

to give

Using eq A4 to replaceJ′ in eq A2 yields a quadratic in the
unknownV′:

One solution isV′ ) 0, which corresponds to no interaction
between the atom and diatom. The nontrivial solution, with
the substitutionI ) Mr2/4, is

Using rb ) rr̂ , (r̂ × f̂)2 ) 1 - (r̂‚f̂)2, andJB‚(r̂ × f̂) ) -(JB× f̂)‚r̂,
eq A6 can be put in the form

from which Vb′ and eq 20 for∆JB follow immediately.
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